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SUMMARY

The Civil Space Technology Initiative (CSTI) High-Capacity-Power Environmental Interactions Pro-

gram has made great progress in defining and evaluating the interactions of the SP-100 power system

with its expected ambient environments. The NASCAP/LEO and POLAR computer codes demonstrated
that local electric fields at the user interface module are high. Therefore, particular attention must be

paid to geometries and materials in this region to prevent arcing at conductor-insulator junctions in low

Earth orbit (LEO).

NASCAP/LEO and EPSAT computer models revealed that SP-100 payloads float about 100 V neg-
ative of the LEO plasma. In addition, ground tests and modeling done for the Space Station Freedom

Electrical Grounding Tiger Team found that dielectric coatings often break down at such voltages in a

plasma. Thus, surface coatings for SP-100 payloads should be carefully selected. Sputtering may also be

a concern for long-duration missions in LEO at these voltages. Much work has been done on a sputter-

ing mcdel to evaluate surface material loss rates on SP-100 payloads.

In ground plasma chamber tests of cables and cable insulators at SP-100 voltages, parasitic power

losses due to the plasma current collected from possible pinholes or coating defects were quantified and

shown to be small. Modeling revealed that the power loss from currents to other surfaces is also small.

The atomic oxygen durability of SP-100 materials and coatings continues to be investigated in

ground tests. In the upcoming Evaluation of Oxygen Interaction with Materials (EOIM-3) Shuttle flight

experiment, a host of SP-100 materials will be evaluated for atomic oxygen durability in LEO.

Finally, an evaluation of the interactions of the SP-100 power system with lunar and planetary envi-

ronments has started. At a workshop on chemical and electrical interactions on Mars recently held at the
NASA Lewis Research Center_ many of primary interactions were identified. In low Mars orbit, many of

the concerns now being addressed for LEO will be important, and the results of the present Environmen-

tal Interactions Program will be very relevant. On the surfaces of the Moon and Mars, new issues arise.

A workshop report has been published.

INTRODUCTION AND OVERVIEW

Interactions of spacecraft with their environments have traditionally been important in terms of reli-

ability. The Van Allen radiation belts were discovered from the saturation (temporary shutdown) of a

Geiger counter on Explorer I (Vampola, 1980). Anomalies in spacecraft operation in geosynchronous orbit

(GEO) were often traced to spacecraft charging and arcing during solar substorm events: the Marecs-A

spacecraft experienced a power loss on part of its solar arrays as a result of this phenomenon (Frezet et al.,

1989). Spacecraft encountering the powerful radiation belts of Jupiter underwent single-event upsets
because of their hard radiation environment. As a result, solar cells for space applications are routinely

covered with coverslips to reduce radiation damage.



More recently, high-voltage spacecraft in low Earth orbit (LEO) experienced significant interactions

with their environment. The Upper Atmospheric Research Satellite (UARS), with a power system pro-

viding 100 V coming out of an eclipse, charged to 90 V negative of its surrounding plasma because of

plasma interactions with its solar arrays (D. Winningham, 1992, South West Research Institute, San
Antonio, TX, private communication). This charging made data interpretation from some of its

instruments difficult. Because Space Station Freedom would float an estimated 140 V negative of its

surrounding plasma and would be at risk for sputtering and arcing damage, a plasma contactor to control

its floating potential has been baselined (R. Moorehead, 1992, NASA SSF Program Office, Reston, VA,
private communication).

The SP-100 power system's interaction with its environment must be considered when payloads and
missions are planned. The types of interactions it experiences depend on the environments encountered in

its missions (Jongeward et al., 1987). Detailed information about spacecraft environmental interactions

in different regimes is available in several published works.

In the GEO environment, the major interaction of concern is differential charging of different parts of

a spacecraft, which leads to high electric fields and arcing between spacecraft components (Herr, 1991). In
GEO, the ambient-plasma thermal current densities are insufficient to rapidly discharge spacecraft surfaces.

Although there are many sources of charging (i.e., the photoelectric effect, secondary electron emission,

etc.), most arcs result from charging during solar substorm events. At these times, the Earth's geomag-

netic tail, laden with particles from a sudden solar wind transient, undergoes field line breakage and

reconnection, which accelerates electrons to thousands of electron volts. These electrons charge insulating

spacecraft surfaces and increase electric fields to adjacent conductors beyond a breakdown level leading to
arcing (Ferguson, 1986). The resultant arc currents, traveling through spacecraft conductors, upset elec-

tronic components and induce spurious signals. A common design solution for GEO is to coat all outside

spacecraft surfaces with conducting materials to eliminate the possibility of differential charging (Purvis
et al., 1984).

In LEO, absolute charging of spacecraft surfaces with respect to the surrounding plasma is a great

concern. Because LEO thermal plasma current densities are high, surfaces do not ordinarily differentially

charge, and total absolute potentials are rapidly bled off by collected plasma currents. However, some
spacecraft impose differential charging on themselves by using distributed high voltages. Efficient power

distribution requires either massive conducting cables (Ferguson, 1989) or high voltages, the latter being

chosen by SP-100 designers and most others (Josloff, 1988a and Josloff, 1988b). Spacecraft surfaces float

at potentials which result in no net current collection from the plasma. If conductors at different voltages
are not exposed to the space plasma, all spacecraft surfaces will float within a few volts of the surround-

ing plasma potential. If conductors of similar area but different voltages are exposed to the plasma, a

rule of thumb is that the most negative surfaces will float negative of the plasma by about 90 percent of
the total voltage difference between the surfaces. As will be seen in the section Floating Potentials, a

payload of the SP-100 power system will likely float about 100 V negative of a LEO plasma (see fig. 1
from Jongeward et al., 1990). Locally, insulating surfaces will charge only a few volts negative of the
surrounding plasma.

Arcs in LEO occur from conductor-insulator junctions (including holes in cable insulation) when the
conductor is highly negative of the surrounding plasma, or they can occur from anodized or other

dielectric surfaces when the underlying conductor is at a negative potential higher than the dielectric

breakdown strength of the coating (Ferguson, Snyder, and Carruth, 1990). Arc currents may flow out
into the surrounding plasma, the return currents being distributed over wide areas of other spacecraft

surfaces. Arcs can also occur through the plasma between closely spaced conductors at differing voltages

(D.B. Snyder, 1991, NASA Lewis Research Center, Cleveland, OH, private communication). Conducting



surfaceshighlynegativeof the plasmaattract high-energyionsandareat risk for sputtering(Ferguson,
Snyder,andCarruth, 1990). Nearbysurfacesmayacquirea sputteredconductingcoating,whichwill
changetheir electrical,optical,andthermalproperties. If high positivepotentialsoccur,electronswill be
collected,leadingto localizedheatingandsignificantpowerdrains(Stevens,1978). Conductorsmay
becomeexposedby the impactof micrometeoroidsand/or otherdebris,dielectricbreakdown,atomic
oxygendegradation,etc.

Theneutralspacecraftenvironmentis alsoimportant. Chemicallyactivespeciessuchasthe pre-
dominatingatomicoxygenof LEO canoxidizeanddamagesurfaces,especiallyin the ramdirection
wherethespacecraftramvelocitysimulatesa high-energybeam. Volatileoxidationproductsmaybe
lost, leavinga surfacedenudedof its protectivecoverings.Chemicallyactiveionsareattractedby
chargedspacecraftsurfaces,andtheir reactionratesincreasewith energy(Ferguson,1990). Suchcon-
siderationsareimportant mainlyfor low planetaryorbits suchasLEO but mayalsobe important in a
low Marsorbit.

In low-pressure neutral atmospheres, as on the Martian surface and areas surrounding lunar bases,

other interactions may be important: the Paschen breakdown of atmospheric gases and arcing from dusty

surfaces (Kolecki and Hillard, 1992).

The CSTI High-Capacity-Power Environmental Interactions Program has made great progress in

defining and evaluating the interactions of the SP-100 power system with its expected ambient environ-

ments. A preliminary report of important system interactions was published by the S-Cubed Division of

Maxwell Laboratories (Jongeward et al., 1987); however, the present report describes recent results and

activities in many major areas.

SP-100 GROUNDING SCHEME AND SURFACE POTENTIALS

SP-100, a 200-V system, is divided into two halves with the structure ground in the middle (Brewer,

1988). At the user interface module (UIM), the payload is connected to the power system. The payload
experiences a full 200-V difference and is grounded to the negative end of the power supply. Figure 2

(adapted from Brewer, 1988) shows a connection between the SP-100 structure ground and the payload
structure ground through a resistor. As presently configured, to prevent a very large power loss in the
resistor, its value must be high enough to make the payload structure ground be 100 V negative of the

SP-100 structure ground. Thus, in the UIM where the structures are attached, there will be a 100-V dif-

ference in the structure potentials. Attached structures must be connected with an insulating material of
sufficient thickness to stand off this difference. However, the surrounding plasma also has a small region

of high electric fields (a sheath). The NASCAP/LEO and POLAR computer codes showed that local
electric fields at and near the user interface module are high (Jongeward et al., 1990). Attention must be

paid to geometries and materials in this region to prevent arcing at conductor-insulator junctions in
LEO. In particular, conductors known to have a plasma arcing threshold higher than 100 V must be used.

Materials such as silver-coated interconnects and silicon are commonly used in solar cells, and they

do not arc at voltages lower than about 200 V (Ferguson, 1986). On the other hand, from ground plasma

tests_ copper has been inferred to arc at a much lower voltage, possibly as low as 40 V (D.B. Snyder,

1991_ NASA Lewis Research Center, Cleveland, OH, private communication). Arcing thresholds for

other materials have not yet been determined. There is some evidence that arc rates are higher for

materials that absorb and/or adsorb water or other volatile materials (Upschulte et al., 1991). Such
materials, including some types of adhesives and polymeric materials, should be avoided in the UIM joint.

Geometry can influence plasma arcing as well, and geometries that help to prevent ions from entering the



conductor-insulator region are preferred. The SPEAR-I rocket flight avoided arcing at voltages much

higher than 100 V by a clever exclusion of plasma ions from conductor-insulator junctions (Katz, 1989).

Designs that accomplish this exclusion use codes such as NASCAP/LEO and require extensive computer

calculations of particle orbits in the anticipated geometries and electric fields.

FLOATING POTENTIALS

NASCAP/LEO and EPSAT computer models demonstrated that SP-100 payloads float about 100 V

negative of the LEO plasma (Jongeward et al., 1990). This situation exists because of the large area of

exposed conductor in the power system that effectively grounds it to the surrounding plasma. The

grounding scheme used in SP-100 contributes this effect by placing the payload 100 V negative of the
power system. The small payload area then must collect a current of sluggish ions to balance the current

of mobile electrons easily collected by the large power system area. As a result, the power system will

float near the plasma potential, pushing the payload far negative.

For LEO missions the same sort of arcing considered for the UIM joint can be avoided by ensuring

that the payload surfaces not have exposed conductors or exposed conductor-insulator junctions.

For GEO missions, fully conductive surfaces should be used everywhere to avoid differential charging

(Purvis et al., 1984).

DIELECTRIC BREAKDOWN

Ground tests and modeling done for the Space Station Freedom Electrical Grounding Tiger Team
revealed that dielectric coatings often break down at -100 V in a LEO plasma (Grier and Domitz, 1991).

Rated dielectric strengths and strengths measured in an atmosphere were not consistently reached before

breakdown in the plasma. It is suspected that this result can be attributed to the coating porosity which

allows plasma ions to come much closer to the underlying conductor than the nominal dielectric coating
thicknesses. Even coatings with rated dielectric strengths of much more than 100 V seemed porous

enough to the plasma ions to exhibit real dielectric strengths of less than 100 V. Because the SP-100

payload will be at about -100 V with respect to its surroundings, it is important that dielectric coatings

used on its outer surfaces be strong enough to stand off 100 V in a plasma. Thus, surface coatings for

SP-100 payloads must be carefully selected. In particular, the chromic acid anodization commonly used

on aluminum exposed to space often lacks sufficient strength to stand off 100 V in a plasma. Thickening

the coating is not usually an option because the thermal properties of such coatings are influenced. Sul-
furic acid anodized coatings have greater dielectric strengths but very different thermal properties. For

LEO missions, it is recommended that sulfuric acid anodization be used in regions where thermal control

is not an overriding concern and that atomic-oxygen-protected, aluminized kapton blankets (kapton sur-

face on the outside) of 1000-V dielectric strength be used on all other outside surfaces of the payload.

SPUTTERING

In LEO, sputtering is a concern for long-duration missions with the payload at high negative volt-

ages. A complicating factor is that the sputtering species is atomic oxygen; little information is available

about atomic oxygen or about the chemical effects that may contribute to sputtering rates. Much work

has been done on a sputtering model to help evaluate surface material loss rates on SP-100 payloads in

LEO (Eck, Chen, and Hoffman, 1991). From measurements of low-energy sputtering by atomic oxygen

made by Eck and-others at Case Western Reserve University has come a theory (Eck, 1992) of low-



energy sputtering which better agrees with all known low-energy measurements. One distinguishing

characteristic of Eck's theory is that there is no absolute threshold for sputtering; rather, at low energies

the rate is determined by the thermal tail of the surface material atom velocity distribution. Sputtering

rates are a strong function of the surface voltage. Because the voltages on SP-100 are not in the kilovolt

range (which would imply high sputtering rates), sputtering will only be important for mission times as
long as years in a high-density plasma such as that in LEO or low Mars orbit. Sputtering may also be a

long-term problem in the lunar environment if locally produced environmental plasmas have a high

enough density. Whenever long life is required in a high-density plasma environment, surfaces should be

insulated to prevent high-potential conductors from directly contacting the plasma.

The Space Station Freedom Electrical Grounding Tiger Team demonstrated that wherever micro-

meteoroids, debris, or manufacturing defects produce small pinholes in the insulators the sputtering rate

will be greatly increased by ions focusing on the pinhole. Underlying conductors must be sufficiently

thick to withstand puncturing at accelerated sputtering rates (see fig. 3, adapted from Snyder and Herr,

1991). Materials with low sputtering rates may also be used if they satisfy thermal, atomic oxygen,
structural, and other requirements. Optical, thermal, or other specialized coatings in the line of sight to

the sputtering pinhole become coated with the sputtered material over a long period of time. Hence, it is

desirable to place such surfaces out of the line of sight.

PARASITIC POWER DRAIN

Wherever biased, exposed conductors exist, plasma currents will be collected. In the ground plasma

chamber testing of cables and cable insulators at SP-100 voltages, parasitic power losses due to the

plasma current collected from pinholes or coating defects were quantified and shown to be small. In

particular, Grier and Domitz (1989) tested several candidate cable materials and showed that below
+200 V collected currents remained negligible. At voltages of 200 V and above, insulation pinholes

exhibited snapover effects. However, it is unlikely that any SP-100 surfaces will be at potentials greater

than 100 V above the plasma potential so snapover is not expected to occur. NASCAP/LEO modeling

has shown that the power loss from currents to other surfaces is small compared to the total delivered

current and thus the percentage efficiency loss is also small (Jongeward et al., 1990). In general, for

every square meter of exposed payload conductor in LEO a parasitic structure current of about 1 mA
may be expected. Thus, for a payload with a surface area of about 100 m 2, only 100 mA of structure cur-

rent may be extracted from the power supply capacity as compared to the 500 A that the power source

may deliver at 200 V and 100 kW.

ATOMIC OXYGEN DURABILITY

Materials exposed to atomic oxygen (the predominant species in LEO) are subject to rapid oxida-
tion. In contrast to sputtering by ions in LEO where the sputtering rate per incident particle may be 0.1

and the flux of sputtering particles on the order of 1012 _articles per cm2/sec, atomic oxygen reaction
rates may be 1.0 and the ram flux 1014 particles per cm /sec (Tennyson and Morison, 1990). Thus,

instead of a time scale of 10 years for sputtering, we might expect a degradation time scale of a few days

for atomic oxygen. Indeed, in LEO, only a few weeks are required to destroy a 1-mil (25.4-#m) layer of a

highly reactive material like kapton (Ferguson, 1990). However, not all materials are reactive in atomic
oxygen. For SP-100 LEO missions with orbit times of more than a few days, nonreactive surface mate-
rials must be used.



Theatomicoxygen reaction rates and kinetics for a variety of SP-100 materials have been measured

by several researchers: Ferguson, 1984; Horton, Eck, and Hoffman, 1989; Banks, Auer, and DeFilippo,

1990. Investigations of the atomic oxygen durability of SP-100 materials and coatings are ongoing in
ground tests and will be continued on the EOIM-3 Shuttle flight experiment to be launched in 1992. The

materials to be investigated as part of the CSTI Environmental Interactions Program on this flight are
listed in the appendix.

LUNAR AND PLANETARY INTERACTIONS

The interactions of the SP-100 power system with lunar and planetary environments were identified

and evaluated at a workshop held in November 1991 at NASA Lewis (Kolecki and Hillard, 1992). Many

of the primary interactions were identified. For example, in low Mars orbit, atomic oxygen degradation
and arcing to the plasma are of concern as they are for LEO. The findings of the present Environmental

Interactions Program will be relevant to these concerns. On the surface of Mars, there are new problems

such as Paschen breakdown in low-pressure neutral environments, chemical and electrical interactions

with dust, and melting of the Martian permafrost. Some of these concerns may exist for the Moon.

RECOMMENDATIONS

The SP--100 power system design requires that the resistance between the SP-100 structure ground

and the payload structure ground be high enough to ensure that the payload structure ground will be 100 V

negative of the SP-100 structure ground. Therefore, in the user interface module (UIM), where the struc-
tures are attached, there will be a 100-V difference in the structure potentials. The structures must be

connected with an insulating material thick enough to stand off the 100-V difference.

In LEO plasma, attention must be paid to materials and geometries in the UIM joint in order to

prevent arcing at conductor-insulator junctions. Because conductors known to have a plasma arcing

threshold higher than 100 V must be used, plasma testing to identify such materials should be done.

Also, there is some evidence that arc rates are higher for materials that absorb/adsorb water and/or
other volatile materials. Such materials should not be used in the UIM joint.

Geometry can influence plasma arcing as well. Thus, geometries that help to prevent ions from
entering the conductor-insulator region are preferred.

To avoid arcing during LEO missions, payload surfaces should not utilize exposed conductors or

exposed conductor-insulator junctions. For GEO missions, fully conductive surfaces should be used every-

where to avoid differential charging.

For LEO missions, sulfuric acid anodization should be used as an insulating surface in regions where

thermal control is not an overriding concern. Also, atomic-oxygen-protected, aluminized kapton blankets
(kapton surface on the outside) with a 1000-V dielectric strength should be used on all other outside sur-
faces of the payload.

Whenever long life is required in a high-plasma-density environment such as low planetary orbits,

surfaces should be insulated to prevent the sputtering of high-potential conductors in the plasma.

Wherever micrometeoroids, debris, or manufacturing defects produce small pinholes in insulators, the

sputtering rate will be greatly increased by ions focusing into the pinholes. Underlying conductors must
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be sufficiently thick to withstand puncturing at accelerated sputtering rates. Materials with low sputter-

ing rates may also be used if they satisfy thermal, atomic oxygen, structural, and other requirements.

Optical, thermal, or other specialized coatings in the line of sight to the sputtering pinhole will become

coated with the sputtered material over a long period of time. Such coated surfaces should be placed out

of the direct line of sight.

For SP-IO0 missions with LEO orbit times of more than a few days, surface materials that do not

react with high-energy atomic oxygen must be used.



APPENDIX--SP-100 SAMPLES ON EOIM-3 SHUTTLE FLIGHT EXPERIMENT

Niobium-1 zirconium

Tungsten-niobium composite

PWC-11

Rokide C

Europium oxide

Indium tin oxide

Molybdenum

Type 304 stainless steel

Udimet 720

Polycarbonate

FEP on kapton

Space suit outer fabric

FEP Teflon

Kevlar

Inconel 718

Molybdenum-13 rhenium

GE Black

BN Point Type A

Brass

Tungsten

6061-T6 aluminum

Diamondlike film

Polypropylenemesh

Viton fabric

Kapton

Space suitfabricupsidedown

Titanium

Nomex
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